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Clinical Diagnostics in Human Genetics
with Semantic Similarity Searches in Ontologies

Sebastian Köhler,1,2 Marcel H. Schulz,3,4 Peter Krawitz,1,2 Sebastian Bauer,1 Sandra Dölken,1

Claus E. Ott,1 Christine Mundlos,5 Denise Horn,1 Stefan Mundlos,1,2,3 and Peter N. Robinson1,2,3,*

The differential diagnostic process attempts to identify candidate diseases that best explain a set of clinical features. This process can be

complicated by the fact that the features can have varying degrees of specificity, as well as by the presence of features unrelated to the

disease itself. Depending on the experience of the physician and the availability of laboratory tests, clinical abnormalities may be

described in greater or lesser detail. We have adapted semantic similarity metrics to measure phenotypic similarity between queries

and hereditary diseases annotated with the use of the Human Phenotype Ontology (HPO) and have developed a statistical model to

assign p values to the resulting similarity scores, which can be used to rank the candidate diseases. We show that our approach outper-

forms simpler term-matching approaches that do not take the semantic interrelationships between terms into account. The advantage of

our approach was greater for queries containing phenotypic noise or imprecise clinical descriptions. The semantic network defined by

the HPO can be used to refine the differential diagnosis by suggesting clinical features that, if present, best differentiate among the candi-

date diagnoses. Thus, semantic similarity searches in ontologies represent a useful way of harnessing the semantic structure of human

phenotypic abnormalities to help with the differential diagnosis. We have implemented our methods in a freely available web applica-

tion for the field of human Mendelian disorders.
Introduction

Making the correct diagnosis is arguably the most impor-

tant role of the physician. Clinical diagnostics is often

challenging, especially in the field of medical genetics,

where the differential diagnosis is complicated by the

shear numbers of Mendelian and chromosomal disorders,

each of which may be characterized by numerous clinical

features that are often shared by many diseases. In addi-

tion, pleiotropy and variable expression of individual

disorders mean that individual patients with a given

disease may have different, partially overlapping combina-

tions of clinical signs and symptoms. A timely and correct

genetic diagnosis is important for avoiding unnecessary

diagnostic procedures, identifying appropriate therapeutic

measures and clinical management strategies, and

providing adequate genetic counseling. However, an etio-

logical diagnosis can be made in only about half or fewer

of the children presenting with dysmorphic signs with or

without mental retardation.1–5

Because of these difficulties, a number of genetic data-

bases have been developed, including POSSUM6 and the

London Dysmorphology Database (LDDB),7 as well as

the search routines available with the Online Mendelian

Inheritance in Man (OMIM) website8 and Orphanet.9

Users enter one or more features and are presented with

a list of candidate diagnoses that are characterized by

some or all of the features. However, these systems do

not provide explicit rankings or measures of plausibility

for the potentially long lists of search results. None of
The Amer
the systems explicitly use semantic relationships between

clinical features in order to weight search results.

In this paper, we present a method for clinical diagnos-

tics based on a newly developed ontological search routine

that uses the semantic structure of the Human Phenotype

Ontology (HPO)10 to weight clinical features on the basis

of specificity and to identify those clinical features that

best distinguish among the top candidate differential diag-

noses. We have developed a statistical model to assign a

p value to the score obtained by searching on n terms, cor-

responding to the probability of obtaining a given simi-

larity score or better by choosing the same number of query

terms at random. Intuitively, if the highest-scoring candi-

date diagnosis has a significant p value, this would indicate

to the clinician that this syndrome is a likely differential

diagnosis and should be considered further. If, on the other

hand, the highest-scoring candidate does not have a signif-

icant p value, this could indicate that the combination of

phenotypic abnormalities entered by the physician is not

specific enough to allow a diagnosis, or that the combina-

tion of features pertains to a clinical entity that is not

represented in the database being queried.

Material and Methods

An ontology is a computational representation of a domain of

knowledge based upon a controlled, standardized vocabulary for

describing entities and the semantic relationships between

them. Many ontologies are structured as a directed acyclic graph

(DAG), whereby the nodes of the DAG, which are also called terms
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of the ontology, correspond to concepts of the domain. After the

success of Gene Ontology,11 ontologies have been developed for

many fields in biomedical science.12 We developed the HPO in

order to provide a standardized vocabulary of phenotypic abnor-

malities encountered in human disease.10 For the comparisons

described here, the version of the HPO from May 6, 2009 was

used. This version is available as version 1.58 from the National

Center of Bioontologies (NCBO) Bioportal website, where the

HPO can be found via ontology ID 1125. In this version, the

HPO contains nearly 9000 terms. Each term in the HPO describes

a phenotypic abnormality, such as atrial septal defect. These terms

are related to parent terms by ‘‘is a’’ relationships, meaning that

they represent a subclass of a more general parent term. In contrast

to strict hierarchies, the data structures used to represent ontol-

ogies (e.g., DAGs) allow a term to have multiple parent terms. In

the HPO, multiple parentage allows the different aspects of pheno-

typic abnormalities to be represented. The phenotypic feature

atrial septal defect, for instance, has the parent terms abnormality

of the cardiac septa and abnormality of the cardiac atria, both

describing a cardiac abnormality (Figure 1). Annotation is the

process of assigning ontology terms (concepts) for the description

of objects. In the case of the HPO, ontology terms corresponding

to phenotypic abnormalities are used for annotation of diseases.

Currently, almost 50,000 annotations to 4813 diseases listed in

OMIM are provided. The true path rule applies to all terms in

the HPO. That is, if a disease is annotated to the term atrial septal

defect, it is implicitly annotated to all ancestors of this term (for

instance, Ellis-van Creveld syndrome is annotated to atrial septal

defect, and it is therefore implicitly annotated to all the ancestors

of that term, such as cardiac malformation) (Figure 1).

Figure 1. The Human Phenotype Ontology
The HPO is represented as a directed acyclic graph, in which terms
represent a specific type of a more general parent term. Terms may
have multiple parents reflecting multiple semantic relationships.
Links between the terms represent subclass (‘‘is a’’) relationships,
such that children are more specific subclasses of their parents.
For instance, the clinical feature abnormality of the atrial septum is
a child of abnormality of the cardiac septa and abnormality of the
cardiac atria. The HPO currently has nearly 9000 terms.
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The importance of a clinical finding for the differential diag-

nosis depends on its specificity. In ontologies, specificity is

reflected by the information content (IC) of a term. The frequency

of a term is defined as the proportion of objects that are annotated

by the term or any of its descendent terms. The IC is then defined

as the negative natural logarithm of the frequency.13 Thus, the IC

of terms tends to grow as we move from the root of an ontology to

more specific descendent terms. In our implementation, the IC of

a phenotypic feature t is defined on the basis of its frequency

within our annotation database. For instance, atrioventricular block

is used to annotate three diseases among a total of 4813 diseases,

so that its IC is calculated as �log(3/4813) ¼ 7.38. The more

general term abnormality of the musculoskeletal system pertains to

2352 diseases, so its IC is �log(2352/4813) ¼ 0.72.

The similarity between two terms can be calculated as the IC of

their most informative common ancestor (MICA).14 For instance,

in Figure 1, the similarity between the terms abnormality of the

cardiac septa and abnormality of the cardiac atria is calculated as

the IC of the term cardiac malformation.

We can use above-mentioned term-similarity measures to calcu-

late a similarity score on the basis of the query terms entered by

the physician and the terms used to annotate the diseases in a data-

base. Several similarity measures have been proposed14–16 and

have been applied to the biomedical domain.17–20 In our case,

for each of the query terms, the ‘‘best match’’ among the terms

annotated to the disease is found and the average over all query

terms is calculated. This is defined as the similarity:

simðQ/DÞ ¼ avg

"X
t1˛Q

max
t2˛D

ICðMICAðt1,t2ÞÞ
#
: (Equation 1)

Figure 2 provides an overview of the approach. This measure will

return a high score if a good match is found for each term in the

query. In the following text, we will refer to this method as the

Ontological Similarity Search (OSS). Note that Equation 1 does

not take into account the fact that there could be a number of

terms annotated to the syndrome in addition to those used for

the maximum match. For instance, this would be the case if

a specific query is compared to two syndromes, both of which

are annotated by terms that exactly match the query but one of

which is annotated by a number of additional terms. With the

one-sided formula (Equation 1) used, both syndromes would

receive the same score. It is also possible to define a symmetric

version of Equation 1 in which the similarity of the query to the

disease is averaged with the similarity of the disease to the query:

simsymmetricðD,QÞ ¼ 1

2
simðQ/DÞ þ 1

2
simðD/QÞ: (Equation 2)

We also implemented a simple feature vector (FV) method, in

which the exact overlap between Q and D is calculated. This

method is meant to be similar to text-matching methods used by

POSSUM6 and the London Dysmorphology Database,7 as well as

the search routines available with the OMIM website8 and

Orphanet.9 However, we note that we did not attempt to perform

an explicit comparison with these databases because of the different

clinical vocabularies used by each of these databases and the fact

that they do not provide a ranking for the results of searches.

p Value Calculation
The raw similarity score depends on a number of factors, including

the number and specificity of the terms both of the query and

of the diseases represented in the database. It is thus not possible
r 9, 2009
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Figure 2. Searching in Ontologies
Calculation of phenotypic similarity between the query terms downward slanting palpebral fissures and hypertelorism with annotations of
Noonan syndrome (MIM 163950) (A) and Opitz G/BBB syndrome (MIM 300000) (B). Note that not all of the annotations for these
syndromes are shown. Because the feature downward slanting palpebral fissures is not annotated to Opitz G/BBB syndrome, the overlap
(dark yellow area) of the query terms is less for Opitz G/BBB syndrome than for Noonan syndrome. The implications for the calculation
for the similarity score can be seen in (C). In Noonan syndrome, there is a perfect match for every query term with a term used to anno-
tate the disease. In contrast, the best match for downward slanting palpebral fissures among the annotations of Opitz G/BBB syndrome is
telecanthus. The most informative common ancestor of these two terms is abnormality of the eyelid; therefore, the information content
(IC) of abnormality of the eyelid is taken to be the similarity between the two terms. The similarity between the query and the diseases
is then defined as the average maximum similarity score for each of the query terms, and the query is found to be more similar to Noonan
syndrome than to Opitz G/BBB syndrome.
to say what score constitutes a ‘‘good match’’ for a general query.

We have therefore developed a statistical model based on the

distribution of similarity scores that is obtained by randomly

choosing combinations of HPO terms. Intuitively, random combi-

nations of clinical features are unlikely to be observed in real

diseases, so that the scores obtained by entering a combination

of terms that characterize a given disease are higher. If a given

score is only rarely obtained by chance, then we consider it to

be statistically significant.
The Amer
We estimated a p value for each search result that indicates the

probability of obtaining the same or higher similarity scores by a

randomly generated query set of the same size. The p values are

estimated by Monte Carlo random sampling and corrected for

multiple testing by the method of Benjamini and Hochberg.21

For each query, similarity scores are calculated for each disease in

the database, and the best differential diagnoses are returned to

the user, ranked by p value. We will refer to this method as Onto-

logical Similarity Search with p values (OSS-PV).
ican Journal of Human Genetics 85, 457–464, October 9, 2009 459



Our similarity score is based on an average over all of the scores

for the individual query terms (see Equations 1 and 2). Thus, the

probability of observing a certain (or higher) score S in a similarity

search with two query terms is different than that in a similarity

search with six query terms. That means we need to compute

the p value for every number of query terms q that we allow for

the search. Unfortunately, the exhaustive computation of all

possible choices is infeasible, because the number of combinations

grows exponentially with q. Instead, we take a Monte Carlo

approach and approximate the complete probability distribution

with 100,000 random searches on the HPO for every OMIM entry.

The simulation is repeated for searches with q ¼ 1.10 query

terms, for each of the similarity measures to be tested. We stored

on disk all possible scores for every OMIM entry (rounded to

four decimal places) and the associated p value. For 11 or more

terms, we used the precalculated distribution for ten terms.

Performance Evaluation and Generation

of Simulated Patients
It is difficult to validate a diagnostic algorithm by using real

patients for a number of reasons, mainly because it is difficult to

get phenotypic information about hundreds or thousands of

patients (which would be needed for statistical validation) that

has been collected with the use of a standardized procedure

and a standardized vocabulary. We therefore took an informatic

approach, in which we generated clinical data for ‘‘simulated

patients’’ on the basis of the frequency of clinical features among

persons diagnosed with a certain disease. We identified 44

complex dysmorphology syndromes for which adequate

frequency data were available (see Tables S1–S45, available online),

and we used this information to generate the simulated patients.

We assumed that the occurrence of individual clinical features is

independent. Although this assumption is not correct, sufficient

data are currently not available for modeling of the interdepen-

dencies of clinical features. For instance, in order to generate

patients for a disease with the features A, B, and C, in which A

occurs in 50%, B occurs in 70%, and C occurs in 10% of patients,

we use a random number generator to generate three random

numbers uniformly distributed between 0 and 100. If the first

number is less than 50, we assign the feature A to the simulated

patient, and otherwise we do not. If the second number is less

than 70, we assign B to the patient, and if the third number is

less than 10, we assign C to the patient. We then repeat this proce-

dure 100 times in order to generate 100 patients with different

combinations of clinical features. Because some of the diseases

have gender-specific features, we first decided whether the patient

was male or female and adjusted the simulation accordingly.

In clinical practice, patients can not only have signs and symp-

toms that are related to some underlying disorder but may also

have unrelated clinical problems. We refer to this as ‘‘noise.’’ In

oder to simulate noise, we added again half as many noise terms

to the terms selected from the underlying disease. That means

that if the patient had nine features, we added four randomly

selected terms. We ensured that the noise terms were not ancestors

or descendents of the terms annotated to the disease or of each

other.

Another difficultly with clinical databases is that physicians

may not choose the same phrase to describe some clinical

anomaly as that which is used in the database. This may be

because the physician is unaware of the correct terminology or

because detailed laboratory or clinical investigations have yet to

be performed and a clinical anomaly can only be described on
460 The American Journal of Human Genetics 85, 457–464, Octobe
a general level. We refer to this as ‘‘imprecision.’’ When the impre-

cision mode was turned on, every feature of the patient was

randomly replaced by one of its ancestors, except the root of the

ontology (organ abnormality).

When both ‘‘noise’’ and ‘‘imprecision’’ were applied, we first

performed the imprecision step (which may lead to a reduced

number of features of the patient, for instance, if two query terms

are mapped to the same ancestor term) and afterwards applied the

noise-step.

Results

The Phenomizer

We have implemented the algorithms described above in a

web application called the Phenomizer (Figure S1), and we

will now demonstrate how ontological search algorithms

can be used to assist the diagnostic workflow. Imagine

that a nine-year-old boy is presented for workup of devel-

opmental retardation and is additionally found to have

arachnodactyly, pectus excavatum, and scoliosis. Initial

analysis with the Phenomizer with the use of the corre-

sponding terms yields a list of differential diagnoses with

p values starting at 0.1. This lack of significance reflects

the fact that the clinical findings are not specific enough,

per se, to allow a diagnosis. The physician can now use

the Phenomizer to generate a list of clinical features that

are most specific for individual diagnoses in a set of

selected syndromes and can use this list to guide the

further workup. For instance, one of the features returned,

when all syndromes with p values less than 0.5 are

selected, is arterial tortuosity, generalized, which could

prompt further investigations such as magnetic resonance

imaging of the vasculature. In this case, adding this feature

to the list of features leads to a significant p value for Loeys-

Dietz syndrome 1A.22 The clinical features returned by the

Phenomizer can prompt more exact clinical examination

(e.g., fine, brittle hair) or technical examinations (e.g., radi-

ography to search for codfish vertebrae). In many cases, add-

ing one of these terms to the patient features has the effect

of making one or a few of the diagnoses significant (Table

1), which may help physicians plan the further workup by

referring to an appropriate specialist or performing genetic

mutation analysis.

Evaluating the Phenomizer with Simulated Patients

It is difficult to compare the performance of our method

to that of other systems such as POSSUM or LDDB because

these systems use different vocabularies to describe clinical

features and do not provide p values or rankings for candi-

date diagnoses. Nonetheless, we developed a testing

scheme to compare the Phenomizer to simpler matching

schemes, which simply count the number of clinical

features from a query set that are present in a disease (FV).

We note that the FV method does not take the semantic

inheritance structure of the ontology into account. It essen-

tially compares two vectors of zeros and ones with one field

for each of the clinical features being compared, whereby
r 9, 2009



the vector has a ‘‘1’’ if a feature is present and a ‘‘0’’ if it is not

present. The dot product of a query vector (with the features

observed by the physician) and the disease vector (with all

of the features characterizing a disease) then yields a count

of common features. The disease with the highest count is

taken to be the best differential diagnosis.

We also simulated the effects of adding ‘‘noise’’ (i.e., addi-

tional clinical features not related to the underlying diag-

nosis) to the query and of using ‘‘imprecise’’ terms (i.e.,

replacing query terms with randomly chosen ancestors of

the terms; for instance, replacing the term atrial septal defect

with abnormality of the cardiac septa) (Figure 1). Additional

information about the procedures can be found in the

Material and Methods section. We then collected compre-

hensive clinical information on 44 complex dysmorphol-

ogy syndromes from the literature, including information

on what proportion of patients have any given clinical

feature, and used this information to generate 100 virtual

patients with each syndrome, whereby the probability of

any virtual patient having a given clinical feature is taken

to be the proportion of patients from the literature with

the feature (see Tables S1–S45). We ranked the complete

database of 4813 OMIM diseases by calculating the simi-

larity of the simulated patient to every OMIM disease and

recorded the rank of the correct diagnosis returned by the

Phenomizer. In the case of ties, the average rank was returned

(e.g., if three syndromes each received the best score, all

three were assigned rank 2). When the ranking was done

by p value and two or more diseases had the same p value,

the score is used for ranking, such that ties are only possible

Table 1. The Semantic Structure of the HPO Can be Used for
Identifying Features that Best Discriminate among Differential
Diagnoses

Additional Feature
Best Differential
Diagnosis

Number of
Differential
Diagnoses with
p < 0.05

Arterial tortuosity,
generalized

Loeys-Dietz
syndrome 1A

1

Codfish vertebrae MRXS14 2

Broad femoral
metaphyses

CATSHL syndrome 1

Arnold-Chiari type I
malformation

Shprintzen-Goldberg
syndrome

1

Fine, brittle hair Homocystinuria 1

The semantic structure of the HPO can be used for identifying features that best
discriminate among differential diagnoses. For instance, searching on the
terms developmental retardation, arachnodactyly, pectus excavatum, and scoli-
osis initially returns a list of differential diagnoses starting with p values at
0.1. The Phenomizer provides a list of HPO terms that would best distinguish
between selected differential diagnoses. This can suggest possibilities for
further examinations that would help to narrow down the differential diag-
nosis. If such a feature is found, users can add the corresponding term to the
list of patient features and recalculate the statistical significance of the resulting
similarity scores. This table shows exemplary results of adding individual terms
to the search. For each term, the best diagnosis is shown together with the total
number of differential diagnoses with a p value of 0.05 or less. In the case of
ties, only one, arbitrarily chosen diagnosis is shown. Abbreviations are as
follows: MRXS14, mental retardation, X-linked, syndromic 14 (MIM 300676);
CATSHL, camptodactyly, tall stature, scoliosis, and hearing loss (MIM 610474).
The Amer
if the p value and the score are identical. The results of this

simulation procedure are shown in Figure 3.

It can be seen that both ontological methods (OSS and

OSS-PV) have a modest advantage over the feature-vector

(FV) method in an ideal situation with no noise or impre-

cision. The performance of the FV method deteriorates

somewhat when phenotypic noise is added. The effect of

imprecision simulates the situation when the physician

enters a term to describe a clinical feature that is more

general than the term used in the database. It can be

seen that the performance of the FV method greatly suffers

in this situation, whereas that of the ontological methods,

which intuitively use the semantic network encoded in the

ontology to recognize that the imprecise term has a

meaning similar to that of the term used in the database,

shows only a minimal decrease in performance. The OSS-

PV, which bases the ranking on the p value of attaining

a given score for each disease in the database (OSS-PV),

was superior to the results of ranking on the basis of the

raw similarity scores (OSS). This reflects the fact that the

distribution of similarity scores is not the same for all

diseases in the database (results not shown) and suggests

that search methods that take the local score distributions

into account are superior. In sum, we have shown that

ontological approaches (OSS, OSS-PV) are especially robust

in the presence of noise and are not overly dependent on

the exact search terms being used. Clearly, OSS-PV signifi-

cantly outperforms all other methods (p < 2.2 3 10�16;

Mann-Whitney test).

There are a number of different ways of performing an

ontological similarity search. The results presented above

are based on a one-sided search using a similarity measure

based on the information content of the most informative

common ancestor (Equation 1), whereby the ‘‘best match’’

is sought for each query term among all terms used to

annotate a disease. We also performed the analysis by using

the symmetric version of the similarity score (Equation 2).

The corresponding OSS-PV also significantly outperformed

the feature-vector method in this setting (p < 1.3 3 10�3;

Mann-Whitney test). We have also tested a number of

different similarity measures that use different algorithms

for calculating the similarity between terms in an

ontology.15–17,19,23 The results of simulations using these

algorithms were inferior to those using the information

content of the most informative common ancestor as

defined with the use of Equations 1 and 2 (data not shown).

Discussion

Computer-based decision support programs for physicians

have been in use since the 1960s, and numerous algo-

rithms have been evaluated, including mainly naive Bayes

classifiers, rule-based systems, artificial neural networks,

and expert Bayesian networks.24–28 The field of medical

genetics poses special challenges because of the large

number of distinct syndromes and phenotypic features
ican Journal of Human Genetics 85, 457–464, October 9, 2009 461
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Figure 3. Performance Evaluation
Rankings of correct differential diagnosis
of the simulated patients by the feature
vector (FV) method, ontological similarity
search (OSS), and p value (OSS-PV). Lower
ranks indicate superior performance,
a rank of 1 being the optimum result. A
boxplot of the median ranks for each of
the simulated patients for each of the three
methods is displayed with different combi-
nations of noise (adding randomly chosen
terms) and imprecision (replacing terms
by more general ancestor terms). Each
boxplot shows 50% of the data points
surrounding the median in the box, where
the position displays the skewness of the
data. The whiskers extend to the most
extreme data point that is no more than
1.5 times the length of the box away
from the box. More extreme outliers are
displayed as circles. In all testing situations
(with or without noise, with or without
imprecision), the OSS-PV method showed
a significantly better performance in com-
parison to ranking according to raw scores
(OSS) or the FV method (p < 2.2 3 10�16;
Mann-Whitney test). The semantic simi-
larity metric (OSS-PV) used by the Phenom-
izer is especially robust against randomly
added additional features and when parent
terms of syndrome annotations are used in
the query.
that need to be considered and the fact that pathogno-

monic signs are rare and in many cases combinations of

more- or less-specific clinical features are needed for a diag-

nosis.29 Previous computer-based systems for medical

genetics diagnostics have relied mainly on identifying lists

of syndromes characterized by at least a certain number of

query features, and have not provided a means of deter-

mining whether any given match is significant in a statis-

tical sense. The procedure that we have described in this

paper takes advantage of semantic similarity in an

ontology to rank candidate diseases (the differential diag-

nosis) according to their semantic similarity with the

query terms and to provide a p value that indicates

whether the similarity scores of best-matching candidate

diseases are significantly better than would be expected

by chance. In addition, the semantic network induced by

the list of differential diagnoses is exploited to indicate to

the user those clinical features that if present best distin-

guish among the top differential diagnoses, which may

either suggest to the physician sensible follow-up exami-

nations or induce him or her to reexamine the patient

for subtle phenotypic features not sought after during

the initial examination.

To evaluate our diagnostic algorithm, we developed

a testing scenario based on ‘‘simulated patients’’ presenting

with clinical features of one of 44 complex dysmorphology

syndromes. The features were chosen to be present or not

according to the frequencies of their occurrence as

reported in the genetics literature. The results of the simu-

lation demonstrated that the ontological approaches,
462 The American Journal of Human Genetics 85, 457–464, Octobe
especially OSS-PV, performed better than diagnostic algo-

rithms on the basis of exact matching of items in a pheno-

typic feature vector. The advantage was the greatest in the

presence of phenotypic ‘‘noise’’ and ‘‘imprecision’’ in the

description of clinical abnormalities, which we contend

is typical in the clinical setting. Presumably, the superior

performance of ontological algorithms reflects the advan-

tage of exploiting the semantic structure of the HPO. There

are limitations to the simulation strategy that we used for

the analysis, including the fact that the occurrence of the

various phenotypic abnormalities that characterize

a disease is not independent. However, not enough data

are available for the inclusion of correlations between

phenotypic features in the simulation.

We have implemented our method as a freely available

web application called the Phenomizer. The Phenomizer is

not intended to be an expert system (software that

attempts to reproduce the performance of a human expert)

but rather a system for experts, who can use the Phenomizer

to help guide the differential diagnostic process in human

genetics. By providing a statistical measure of the signifi-

cance of the proposed candidate diagnoses, the Phenomizer

can provide some indication of whether the clinical

features entered by the physician are in themselves highly

suggestive of a given diagnosis or, on the other hand,

whether no diagnosis in the database significantly matches

the query terms. Finally, although we have implemented

our methods for the domain of medical genetics, similar

approaches could be used for any field of medicine for

which an ontology and annotations have been developed.
r 9, 2009



Supplemental Data

Supplemental Data include one figure and 45 tables and can be

found with this article online at http://www.cell.com/AJHG/.
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